TIME-CORRELATED SINGLE PHOTON IMAGING

PHOTONIS EXCISENS GROUP

LINCam

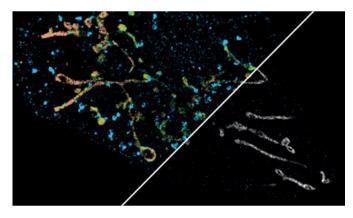
Ultra-fast optical camera with picosecond resolution for lifetime imaging

The LINCam is an easy to use event-based camera that can detect single photons on the picosecond scale. Paired with a pulsed light source, the LINCam can turn any conventional microscope into a powerful lifetime imager.

The unique combination of low dark count rate, high quantum efficiency and high read-out speed enables quality lifetime images in a short time and at low laser power density.

*In collaboration with Photonscore.

Key Features

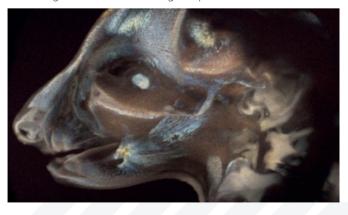

- High Time Resolution
- Broad Spectral Range
- ♦ Fast Read Out Speed
- ♦ Live View Functionality
- ♦ High Spatial Resolution
- ♦ Intuitive to Use Software
- ♦ Event-Based Camera

Applications

- ♦ (3D) Light sheet FLIM & FRET
- ♦ Metabolic & NADH Imaging
- ♦ Single Molecule Imaging
- ♦ Time Resolved Raman Spectroscopy
- Quantum Optics

Contact us for expert advice on your application

Single Molecule Imaging



Different types of single molecules are often spectrally unresolvable. However, they can be characterized and separated by their corresponding fluorescence lifetimes. With LINCam, it is possible to create a contrast between different single molecule emitters with an accuracy of <200ps in high-resolution widefield lifetime images.

Widefield / Light Sheet FLIM

In Widefield Fluorescence Microscopy (FLIM) the whole field of view is illuminated simultaneously, in contrast to confocal imaging.

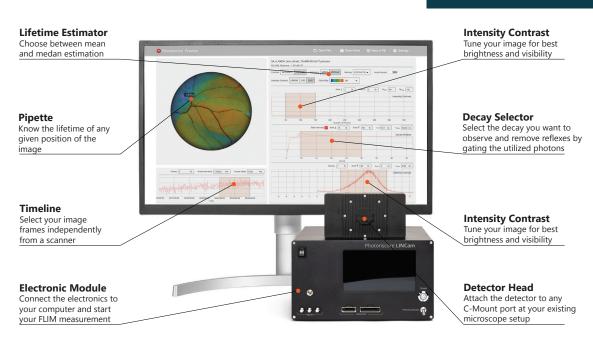
Widefield FLIM enables fast detection of fluorophores under low light conditions with high temporal resolution. Using LINCam, you can analyze complex fluorescence decays and generate high quality FLIM images and movies of living samples.

LINCam Specifications

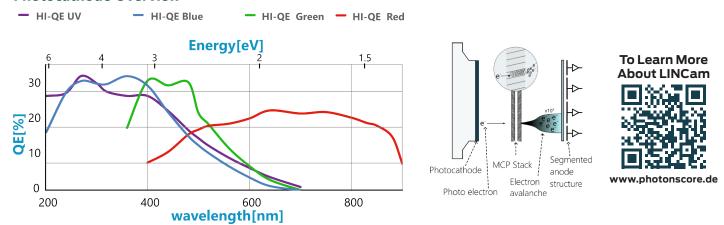
Detector Specifications

Active Area Diameter	17 mm
Spatial Resolution	17 μm
Temporal Resolution	17 ps , σ (Gaussian)
Dark Count	HI-QE UV, Blue, Green: <15 cps, HI-QE Red <200 cps
Deadtime	250 ns
Maximal Count Rate	1 MHz
Microscope Mount	C-Mount
Dimension Detector Head	145 × 78 × 50 mm
Cooling	Thermo Electrical
Reference Input	Positive or Negative NIM
Computer Interface	USB 3.0 / Ethernet
Operating System	Microsoft Windows 7/10/11 (64bit)

Cathode Specifications


Input Window	Quartz, Glass, MgF ₂
Photocathode	Hi-OF UV. Blue. Green. Red (other types available upon request)

LINCam Overview


The LINCam is a product from Photonscore, a spin-off from the Leibniz Institute for Neurobiology. The LINCam is made possible by Exosens who produces crucial components in the camera: high time resolution, position sensitive MCP-PMT.

Working Principle

In contrast to frame-based cameras, the LINCam is event-based, meaning it will readout the location with picosecond timing resolution for each detected photon. This enables a high detection rate. A photon hitting the photocathode releases an electron which is then accelerated to the MCP stack where it is multiplied to an electron avalanche . The electron avalanche then hits the segmented anode structure which gives the spatial information

Photocathode Overview

science@exosens.com

exosens.com

