

The Development of A Novel, Cold Electron Source Paper 328

Bruce N Laprade* Francis E Langevin and Ronald Starcher BURLE Electro-Optics, Inc

Presented at The ASMS Conference June 2002 Orlando Florida

Objective

The Objective of this development project was to determine if the microchannels within a microchannel plate could be modified to function as spontaneous electron emitters. Microchannel Plates (MCPs) are arrays of millions of single channel electron multipliers. These devices are routinely used in mass spectrometers to detect and amplify weak ion signals. MCPs are manufactured in sizes ranging from 2 – 150 mm in diameter.

Experimental Method

Microchannel Plates operate on the principle of secondary electron emission. When a charged particle impinges on the input side of the channel with sufficient energy, a few secondary electrons are produced. The resultant electrons continue to cascade down the channel until a charge cloud exits the channel.

It was believed that by altering the microstructure within the channel, spontaneously emitted electrons could be produced, which would initiate the cascading of secondary electrons. By controlling the rate of spontaneous emission and the gain of the device, the emission current could be varied over a broad range.

Theory of Operation

Electrons are spontaneously generated and amplified inside the channel when voltage is applied.

Theory of Operation

Millions of channels are fused into virtually any shape and size to provide a uniform electron flux.

Various Format Electron Generator Arrays

50 x 8 mm

11 x 12 mm

18 mm

40 mm

8 mm

Emission Current 18 mm Format

Applied Voltage (Kv)

ELECTRO-OPTICS

1.5

50 x 8 mm Emission Current

1.00E-11

0

0.5

1

BURL ELECTRO-OPT

3

ICS

Applied Voltage (kV)

2

2.5

10 x 12 mm Emission Current

8 mm Microtron[™] EGA

Applied Voltage (kV)

EGA Electron Source Emission Current vs. Chamber Pressure, Backfill Argon

ELECTROGENTM Stability

% of initial Value

Z-Stack 5 um pore, after 144 hours of operation

Operational Life Time In PFTBA at 4 x 10⁻⁴ torr

Emission Uniformity and Beam Definition 50 x 8 mm Array, Z-Stack Configuration

Millimeters

ELECTROGENTM Turn-On Time

Energy Distribution of Emitted Electrons, Z-Stack Configuration

Emission Current (Relative Scale Amps)

Common Ionization Methods

Photo-Ionization

Chemical Ionization

Field Ionization

Electron Impact

Conventional Electron Impact Ionization Source Configuration

EGA Ionization Source Concept

Ion Sources

Conventional RGA Ion Source EGA Prototype Ion Source

Residual Gas Analysis Taken With EGA Prototype Ion Source

ELECTROGENTM Advantages I

- "Cold" Ionization Source
- Large Emission Area
- Parallel Beam, Not Sensitive to Field Strength Changes
- High Density, Uniform Emission Pattern
- Fine Emission Level Control
- Won't Burn Out, Durable
- No Photon Noise

ELECTROGENTM Advantages II

- Low Maintenance, Frequent Cleaning not Required Because Of Cold Ionization
- No Heat-Up/Stabilization Time Required
- **Bi-Directional Emitter**
- Low Power Consumption (e-gun 38 W vs. EGA 0.024 W)
- Simple Single Voltage Supply Design
- No Raster Scanning Electronics Required

ELECTROGENTM

Specifications

Emission Area	3 mm -150 mm dia
Electron Flux Density	0 to 50 μ A/cm² (Tunable)
Power Supply Voltage	to 3600V Max
Current Required	44 mA Max.
Max Bake Temp	300°C
Max Operating Temp	200°C
Uniformity	10%